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Abstract 

     This article introduces the Special Issue on simple versus complex methods in 

forecasting. Simplicity in forecasting requires that (1) method, (2) representation of 

cumulative knowledge, (3) relationships in models, and (4) relationships among models, 

forecasts, and decisions are all sufficiently uncomplicated as to be easily understood by 

decision-makers. Our review of studies comparing simple and complex methods—

including those in this special issue—found 97 comparisons in 32 papers. None of the 

papers provide a balance of evidence that complexity improves forecast accuracy. 

Complexity increases forecast error by 27 percent on average in the 25 papers with 

quantitative comparisons. The finding is consistent with prior research to identify valid 

forecasting methods: all 22 previously identified evidence-based forecasting procedures are 

simple. Nevertheless, complexity remains popular among researchers, forecasters, and 

clients. Some evidence suggests that the popularity of complexity may be due to incentives: 

(1) researchers are rewarded for publishing in highly ranked journals, which favor 

complexity; (2) forecasters can use complex methods to provide forecasts that support 

decision-makers’ plans; and (3) forecasters’ clients may be reassured by 

incomprehensibility. Clients who prefer accuracy should accept forecasts only from simple 

evidence-based procedures. They can rate the simplicity of forecasters’ procedures using 

the questionnaire at simple-forecasting.com.   

 

     Keywords: analytics; big data; decision-making; decomposition; econometrics; Occam’s 

razor. 

 

This paper is forthcoming in Journal of Business Research in 2015. This working paper 

version is available from simple-forecasting.com. 
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1. Introduction 

     This article provides an introduction to this Special Issue on simplicity in forecasting. 

The call for papers was subtitled “Conditions and complexity in forecasting,” and the 

objective was to publish “research to improve forecasting knowledge by comparing the 

usefulness of simple and complex alternatives under different conditions.”   

     A trend toward complex forecasting has been underway for the past half-century or 

more. Econometricians who believe that complex statistical procedures yield greater 

forecast accuracy have led the trend (see, e.g., Armstrong 1978). The trend is at odds with 

the common belief among scientists that scientists should strive for simplicity. The 

preference for simplicity in science can be traced back to Aristotle (Charlesworth, 1956), 

and is commonly identified with the 14th Century formulation, Occam’s razor. Indeed 

“since that time, it has been accepted as a methodological rule in many sciences to try to 

develop simple models” (Jensen 2001, p. 282). Zellner (2001) concludes social scientists 

too should strive for simplicity. He was joined in this conclusion by the 21 authors 

contributing to the book, Simplicity, Inference and Modelling (Zellner, Keizenkamp, and 

McAleer, 2001).  

     This article first draws upon prior literature to develop an operational definition of 

simplicity in forecasting, then uses the definition to identify and analyze comparative 

studies that could be expected to provide evidence on the conditions under which 

complexity is useful. The review of studies includes new evidence presented in this Special 

Issue. Finally, this article examines evidence on why researchers, forecasters, and decision-

makers are, despite the theoretical and empirical objections, attracted to complexity. 

 

2. Defining simplicity in operational terms 

     Simplicity in forecasting seems easy to recognize, yet is difficult to define. The first 

definition in the Oxford English Dictionary’s OED Online (2014) is, nevertheless, a useful 

starting point: “The state or quality of being simple in form, structure, etc.; absence of 

compositeness, complexity, or intricacy.”  

     For the purpose of making practical distinctions between simple and complex 

forecasting, this article defines simple forecasting as processes that are understandable to 

forecast users. Specifically, the forecasting process must be understandable with respect to 
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methods, representation of prior knowledge in models, relationships among the model 

elements, and relationships among models, forecasts, and decisions.  

     Complexity in forecasting is the opposite of simplicity. In contrast to some discussions 

of complexity in forecasting, by our definition complexity is not a function of the number 

of variables. Nor is complexity a function of the effort required to develop a model. 

     To conclude whether or not an instance of forecasting is simple, as defined here, ask 

forecast users if they understand—and, if so to explain—the forecasting method, how the 

specific model represents prior knowledge, how any parts the model has are related to each 

other, and how and why a forecast from the model would help them to make a better 

decision. A structured questionnaire to derive a measure of the simplicity of the forecasting 

procedures from forecast users’ understanding—the Forecasting Simplicity 

Questionnaire—is available from simple-forecasting.com. 

     The test of simplicity provided by the questionnaire has face validity. Recounting his 

correspondence with Nobel Laureates and other leading economists, Zellner reports James 

Tobin telling him that he and his Council of Economic Advisors colleagues were skeptical 

of complex models of the economy because they “could not understand the workings and 

outputs of such models, and thus did not have much confidence in them” (Zellner 2001, pp. 

243-244). 

     Zellner (2001, p. 242) observes, “Some years ago, I came upon the phrase used in 

industry, ‘Keep it simple stupid’, that is, KISS, and thought about it in relation to scientific 

model-building. Since some simple models are stupid, I decided to reinterpret KISS to 

mean ‘Keep it sophisticatedly simple.’” With that in mind, this article is concerned 

primarily with comparisons of complex forecasting with simple forecasting procedures that 

have been validated by experimental comparisons.  

2.1. Simple methods 

     Simple forecasting methods are relatively few compared to complex methods, which are 

limited in number only by the imaginations of statisticians. The titles and abstracts of 

forecasting papers in academic journals attest to the proliferation of complex methods. Not 

only managers, but also practitioners and many researchers are also likely to struggle to 

comprehend typical forecasting papers. 
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     Incomprehension of forecasting methods, even by the people who pay for them, seems 

common. For example, as part of a three-person consulting team, the second author of this 

article interviewed several analysts in a large firm to assess their understanding of a 

complex model provided at high cost by an outside vendor. The model was designed to 

forecast the effects of advertising expenditures on the company’s market share. The vendor 

provided courses to explain the method to their clients. Even so, none of the analysts could 

explain how the model worked (Armstrong and Shapiro, 1974).  

2.2. Simple representation of prior knowledge in models  

     A scientific, or evidence-based, approach to forecasting requires an effort to summarize 

cumulative knowledge (Armstrong, Green, and Graefe, this issue). Before the 1970s, 

econometricians often based their forecasting models on a priori analyses. They used 

domain experts’ knowledge and what evidence they could glean from prior research to 

guide their selection of variables, to determine directions and the nature of the relationships, 

and to estimate the magnitudes of the relationships. While the process is a logical scientific 

procedure and is simple to explain, much time and effort by experts is often required in 

order to carry it out.  

     In contrast to the high cost of a thorough a priori analysis, applying complex statistical 

methods to large databases is inexpensive. McCloskey and Ziliak (1996) and Ziliak and 

McCloskey (2004) show that many researchers follow the low-cost approach. Their 

analyses of American Economic Review papers found that 75 percent of the papers in the 

1980s that used regression analysis went beyond statistical significance to consider other 

information when selecting variables for regression models. The figure dropped to 32 

percent in the 1990s. 

     Regression analysis identifies statistical patterns in a particular set of data. If the data 

are non-experimental, no matter how “big” they are, there is little reason to expect the 

process to identify causal relationships (Armstrong 2012; Armstrong, Green, and Graefe, 

this issue). In practice, a big data set is likely to include variables that are not independent 

of one another, variables that vary little or not at all, and irrelevant variables, while 

excluding variables that are important. The need for theory, domain knowledge, 

experimental data, and careful thinking for specifying and estimating causal models has not 

changed. 
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     Bayes’ method provides another way to incorporate prior knowledge in forecasting 

models. The method has the disadvantage of being too complex for most people to 

understand. We have been unable to find evidence that Bayesian approaches yield ex ante 

forecasts that are more accurate than forecasts from simple evidence-based methods. The 

first M-Competition (Makridakis, Anderson, Carbone, Fildes, Hibon, Lewandowski, 

Newton, Parzen, and Winkler, 1982) includes tests of Bayesian forecasting for 1 to 18 

period ahead forecasts for 997 time series. Forecasts from simple methods, including naïve 

forecasts on deseasoanlized data, were more accurate than Bayesian forecasts on the basis 

of mean absolute percentage error (MAPE). Forecasts from the benchmark deseasonalized 

single exponential smoothing method reduced error by 12.4 percent (from Makridakis et al., 

1982, Table 2a). Bayesian forecasts were not included in subsequent M competitions. 

Graefe, Küchenhoff, Stierle, and Riedl (2014) found that simply averaging forecasts from 

different methods yields forecasts that reduced error by an average of 5 percent across five 

studies compared to those from Bayesian approaches to combining economic and political 

forecasts. Goodwin (this issue) demonstrates that for many forecasting problems that 

involve choosing between two alternatives, two simple methods would each lead to the 

same decision as Bayes’ method.  

     The simplest representations of prior knowledge in forecasting models are no-change 

models. Forecasts from appropriately formulated no-change models are hard to beat in 

many forecasting situations, either because prior knowledge is insufficient to improve on 

no-change or because prior knowledge leads to the conclusion that the situation is stable.    

2.3. Simple relationships among the model elements  

     Decomposition provides a path to simplicity for many forecasting problems. 

Decomposition in forecasting consists of breaking down or separating a complex problem 

into simpler elements before forecasting each element. The forecasts of the elements are 

then combined.  

     Some researchers suggest that decomposition increases complexity relative to 

forecasting the aggregate directly—such as the works cited by Brighton and Gigerenzer in 

this issue—but that is not the case with the definition proposed in this article.  

     Decomposition is a key strategy for simplifying problems in management science, and 

in other scientific fields. Decomposition can be used with any forecasting method. The 
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method is most useful when different elements of the forecasting problem are forecast by 

different methods, when there is valid and reliable information about each element, the 

elements are subject to different causal forces, and when they are easier to predict than the 

whole. 

      A study on forecasting traffic accidents by García-Ferrer, de Juan, and Poncela (2006) 

provides evidence on the benefits of disaggregation when these conditions are met. Their 

approach of disaggregation by estimating separate models for urban and other roads 

produced forecasts that were more accurate for between 76 and 85 percent of the 63 

comparisons, depending on the criterion used.  

     If there are few data on each element, however, decomposition may not improve 

forecast accuracy. Huddleston, Porter, and Brown (this issue) examine the trade-off in their 

tests of different approaches to forecasting highly variable district-level burglary rates. 

     The relationships among the elements of the decomposed problem should be simple. 

Decomposition based on additive relationships, an approach that is often referred to as 

segmentation, is ideal. Decomposition based on multiplicative relationships—in which the 

elements are multiplied together to obtain a forecast of the whole—is somewhat more 

complex, carrying the risk that errors will multiply; nevertheless, multiplicative 

decomposition is often useful for simplifying complex problems.  

     Many ways are available to decompose forecasting problems. A common approach to 

forecasting sales, for example, is to forecast market size and market share separately. 

Another approach is to decompose a time-series by estimating the starting level—

“nowcasting”—and forecasting the trend separately. Combining nowcasting with trend 

forecasting is an old idea that does not appear to be widely used, and comparative tests are 

few. Nevertheless, the two studies described in Tessier and Armstrong (this issue) suggest 

that substantial error reduction is possible. 

     Transforming variables can help to avoid complexity in a model. Perhaps the most 

common approach is to transform multiplicative relationships into additive relationships by 

using logarithms. The coefficients of variables in logarithmic form are known as elasticities. 

Elasticities represent relationships in an easily understood and useful way; they are the 

expected percentage change in the variable being forecast arising from a one percent 
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change in the causal variable. The intuitiveness of elasticities allows clients to readily 

transform their knowledge into expectations about the magnitude of causal relationships. 

     The index method is an approach to decomposition that is appropriate for situations with 

many causal variables. The index method involves identifying and examining each causal 

relationship individually before combining them in a forecasting model. This easily 

understood approach avoids the complications that arise from using regression analysis to 

develop a forecasting model. As Armstrong, Green, and Graefe (this issue) describe, index 

models provide forecasts of advertising effectiveness and election results that are 

substantially more accurate than those from multiple regression models.  

2.4 Simple relationships among models, forecasts, and decisions 

     The relationships among the models, forecasts, and decisions need to be clear to 

decision-makers in order to help them to choose among alternative courses of action. One 

way to achieve that clarity is to describe the proposed method, and then ask the decision-

makers what decisions they would make in response to different hypothetical forecasts. The 

forecasts should include forecasts of costs and benefits, and likelihoods. Hogarth and Soyer 

(this issue) found that forecast users make better use of uncertainty information about 

forecasts when they are able to observe possible outcomes with the aid of simulation 

software, than when they are provided with standard statistical information about the model. 

     Indeed, the complex statistics typically provided with regression models are unlikely to 

help decision-makers to make better decisions, as they confuse even statisticians. Soyer and 

Hogarth (2012) ask 90 economists from leading universities to interpret standard regression 

analysis summaries. Roughly two-thirds of their answers to three relevant questions were 

substantively wrong.  

     Regression statistics can divert attention from the decision-maker’s need to assess the 

effects of causal variables. Regrettably, the attention of decision-makers is commonly 

subject to diversion of that kind. Academics are not immune, as Ziliak and McCloskey 

(2008) show with many examples from econometric forecasting. 

	
  	
  	
  	
  	
  The	
  R2	
  statistic	
  continues	
  to	
  mislead	
  many	
  analysts	
  and	
  decision-­‐makers,	
  despite	
  

repeated	
  warnings	
  that	
  the	
  statistic	
  is	
  a	
  poor	
  measure	
  of	
  predictive	
  ability.	
  Armstrong	
  

(1970)	
  demonstrates	
  that	
  even	
  with	
  data	
  that	
  are	
  random	
  numbers,	
  a	
  high	
  R2	
  is	
  easily	
  

achieved	
  by	
  using	
  stepwise	
  regression	
  in	
  combination	
  with	
  other	
  common	
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exploratory	
  data	
  analysis	
  techniques.	
  Armstrong	
  (2001,	
  p.	
  461)	
  identifies	
  six	
  studies	
  

on	
  the	
  use	
  of	
  R2,	
  and	
  finds	
  little	
  relationship	
  with	
  forecast	
  accuracy.	
  Similarly, Peach 

and Webb (1983) estimate 50 econometric models in each of three standard mathematical 

forms using 95 and 134 observations. The models involved three independent variables and 

one dependent variable chosen at random from the National Bureau of Economic 

Research’s data bank. The resulting R2 and t statistics were similar to those of established 

models published in the economics literature. Efforts	
  by	
  forecasters	
  to	
  improve	
  R2 are 

likely to harm predictive validity because each new model specification leads the modeler 

away from the original theoretical formulation, assuming there was one.  

     Ziliak and McCloskey (2008) illustrate the harm caused by statistical significance 

testing with examples taken from across the sciences. Cumming (2012) describes 

additional examples. Much of the harm caused by tests of statistical significance arises 

because they divert attention from the pursuit of important information, such as the likely 

costs and benefits of a proposed policy. For example, Hauer (2004) reports that the use of 

statistical significance led to poor decisions on automobile traffic safety policy, such as the 

right-turn-on-red rule. Forecasts of the effects of the rule on accidents and deaths, and the 

time saved by drivers, would have been more useful than the results of statistical 

significance tests.  

     Simpler and more useful measures are available to forecasters than R2 and statistical 

significance. For example, to assess which forecasting method is best, the relative absolute 

error (RAE)—being the size of the forecast error relative to the size of the forecast error 

from a relevant no-change model—is useful and simple to understand. For production and 

inventory control decisions, the mean absolute error (MAE) is a simple and useful measure 

(Armstrong and Collopy, 1992), although it can mislead if demand is intermittent (Boylan 

and Syntetos 2006; Teunter and Duncan 2009). 

 

3. Effects of complexity of methods and models on accuracy 

     Simplicity in forecasting has the obvious advantage of encouraging engagement and 

criticism by facilitating understanding. In addition, simplicity aids in detecting mistakes, 

important omissions, ludicrous variables, unsupported conclusions, and fraud. But how 

accurate are simple methods?  
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     To answer that question, the authors of this article searched for studies that compare the 

accuracy of forecasts from simple versus complex forecasting procedures. To do so, they 

used keywords to search for papers on the Internet, examined references in key studies, and 

contacted key authors. The emphasis of the search was on finding studies showing that, 

under certain conditions, complex methods provide forecasts that are more accurate. To 

help ensure that accurate representation of the studies identified in the search and reduce 

the risk of overlooking important studies, the authors attempted to contact the living 

authors of papers cited in substantive ways in this article. Twenty-one out of the 27 authors 

with known email addresses responded. Their replies led to improvements in the paper. The 

authors of one paper disagreed with the analysis of their findings on forecasts from neural 

networks presented in this article. Details of the analysis are available at simple-

forecasting.com, along with a statement by the two authors of their own conclusions about 

their study. 

     When this article was near completion, the authors sent drafts to email lists with 

requests for further evidence, especially evidence that conflicts with the article’s 

conclusions. Responses provided opinions for and against the conclusions along with a few 

references to relevant studies. The request led to few additions to the evidence because the 

studies proposed by respondents did not provide evidence on complexity versus simplicity 

as the concepts are defined in this article. Typically they associated complexity with the 

number of variables, a factor explicitly excluded from this article’s definition. 

     The following sections review the evidence on simplicity versus complexity for 

judgmental, extrapolative, and causal methods—and for combining forecasts. In the 

judgement of the authors of this article, the differences in the complexity of the methods in 

the comparative studies identified were typically large, though the simpler methods were 

often not as sophisticatedly simple as as they might have been. In other words, the 

comparisons we identify may well understate the relative difference in performance 

between complex and simple evidence-based methods. Full disclosure of ratings is 

provided at simple-forecasting.com so that readers can make their own judgments.  

3.1. Judgmental methods 

     Humans’ capacity for mental processing of information has modest limits. As a 

consequence, judgmental forecasters rapidly reach a point beyond which further 
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information does not help them to make more accurate forecasts. Moreover, humans, no 

matter how clever, are unable to learn about complex relationships from experience alone. 

Thus, without structured methods, we are all ill equipped to make forecasts about complex, 

uncertain situations. 

     The structure, however, need not be complex. In a study on forecasting demand for a 

new form of transportation, a quasi-experiment compares complex and simple methods for 

obtaining data on purchase intentions. Subjects in the complex treatment visited a product 

clinic that allowed them to sit in a prototype car, see descriptive wall posters, watch a 

descriptive movie, and participate in a focus group. Then they completed an intentions 

survey. Another group was mailed a two-page description of the system, the second page 

being a picture of the prototype car, and participants completed the same intentions survey. 

The reported intentions were similar for the two groups (Armstrong and Overton, 1971).      

     Lees and Wright (2004) provide further evidence on the effects of additional 

information on intentions surveys. They obtained purchase intentions for five diverse 

product concepts. The proposed products were presented in one of three forms: simple 

factual description, extended promotional description, and extended promotional 

description with artwork. They obtained responses from between 565 and 625 respondents 

per treatment, and find little difference in intentions to purchase between those who had 

been given the simple descriptions and those given more complex descriptions.   

     Simulated interaction provides a simple way to structure comprehensive information 

about complex situations that involve interactions between parties whose interests diverge. 

The method involves asking people to take on the roles of key participants, providing them 

with a short description of the situation, and leaving them to interact in ways that are 

appropriate to the situation. The typical decision reached in a simulated interaction is used 

as the forecast. Green (2005) obtained 105 simulated interaction forecasts of decisions in 

eight conflict situations. The forecasts reduced error by 47 percent compared to the 101 

forecasts by experts on the complex method of game theory 

     The interactions in the simulated interaction method appear to enable people to make 

better use of more information about complex situations than is the case with unaided 

judgment. Green and Armstrong (2011) test that assumption by obtaining 101 role-

thinking forecasts of the decisions that would be made in nine diverse conflicts from 27 
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Naval postgraduate students and 107 role-thinking forecasts from 103 novices. Given the 

complex task of thinking about the roles, objectives, strategies, and interactions of the 

parties in conflict situations, the accuracy of both groups’ forecasts was little better than 

the 28 percent correct that could be expected from guessing. Thus, neither experts nor 

novices were able to make good use of information about complex situations by thinking 

hard about them, whereas the same information could be simply and realistically modeled 

by simulated interaction, the use of which reduced forecast error by 41 percent for the 

nine situations.  

3.2. Extrapolation methods 

     Extrapolation methods that incorporate more data are likely to improve forecast 

accuracy. That said, more recent data are typically more relevant, especially for short-term 

forecasts. To address that dilemma, Brown (1956) proposes exponential smoothing. 

Exponential smoothing forecasts turned out to be more accurate than those from commonly 

used methods such as judgmental extrapolation and moving averages, and the additional 

complexity that arises from using exponential smoothing is trivial. 

     A second sophisticatedly simple improvement to extrapolation involves damping the 

trend in an exponential smoothing model toward zero when there is uncertainty (see 

Gardner 2006 for a review). By our definition, damping only trivially increases complexity. 

All is done automatically via decomposition, along with additions and multiplications.  

     A third sophisticatedly simple improvement to extrapolation is achieved by making 

adjustments for seasonality when the interval of forecasts is shorter than one year. The now 

widespread use of seasonal factors is largely influenced by the work of Shiskin (1965). 

Seasonal adjustment is a form of decomposition, and can be implemented using addition or 

multiplication. Seasonal adjustments can reduce forecast errors substantially. For example, 

for 68 monthly economic series from the M-Competition, Makridakis et al. (1982, Table 

14) found that seasonal adjustments reduced the MAPE of forecasts for horizons out to 

18 months from 23.0 to 17.7 percent—a 23 percent error reduction. In the M2 

Competition, seasonal adjustment reduced MAPEs for 23 monthly series forecast for up to 

15 months ahead by 41 percent (from Exhibit 1, Makridakis, Chatfield, Hibon, Lawrence, 

Mills, Ord, and Simmons, 1993). 
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     The simple no-change extrapolation model is a strong competitor in many forecasting 

situations, often after the data have been decomposed or adjusted—e.g., by or for price 

level or population. The model is usually formulated as “no change from the current level” 

but sometimes as “no change from the long-term trend.” A well-known demonstration of 

the power of the no-change model is the “random walk down Wall Street” (Malkiel, 2012). 

Random walk is an economists’ term to describe the behavior of a time series without a 

predictable pattern, and hence the next value in the series is expected to be the same as the 

previous one. Researchers have been unable to improve upon the no-change model for 

forecasting day-ahead prices in the stock market.  

     Similarly, Schnaars and Bavuso (1986) compare the accuracy of 180 forecasts from the 

no-change model with 180 forecasts from each of six more complex extrapolation methods 

applied to each of 15 weekly economic indicators. The indicators included production, 

unemployment claim, and resource price series. On average, the no-change model yielded 

the most-accurate forecasts. The forecast errors, MAPEs, from the no-change model were 

half those of forecasts from the most complex extrapolation method tested, generalized 

adaptive filtering. 

     Over the past seven decades or so, authors of journal articles have proposed many 

complex extrapolation procedures. An early review of comparative studies suggests they 

have not lead to improvements in the accuracy of forecasts, with 28 comparisons finding 

forecasts from the simpler method were as or more accurate than those from the more 

complex method and only 11 finding better accuracy from the more complex method 

(Armstrong, 1984).  

     Research since the 1984 review provides additional evidence. Smith’s (1997) review 

found six studies in which extrapolations of population from complex models were no 

more accurate than those from simpler models, and only one study in which complex 

models were more accurate. The simple method was not, however, sophisticatedly simple.  

     Studies in marketing have shown similar results. Schnaars (1984) and Meade and Islam 

(2001) found that forecasts from complex curve-fitting models were no more accurate than 

those from simple extrapolation models. And in their review of evidence on methods for 

forecasting the trial of new consumer packaged goods, Fader and Hardie (2001) report that 

extrapolations using simple models—which were based on estimates of propensities to buy 
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from early purchase data—provide more accurate forecasts than those from complex 

models estimated from the same data in two comparisons. Brighton and Gigerenzer (this 

issue) describe findings that experts’ simple rules provide forecasts of customer behavior 

that are more accurate than mathematically sophisticated models advocated by researchers. 

     The M-Competition found that the simplest extrapolation methods suitable for the data 

used in the competition—deseasonalized no-change and single exponential smoothing—

provided forecasts that were at least as accurate than those from all 16 of the more complex 

methods. On average, the two simplest methods provided forecasts for 1 to 18 months 

ahead for 1,001 time series that reduced MAPE by 34 percent compared to the forecasts 

from the more complex methods (from Table 2a, Makridakis et al., 1982). In the M2 

Competition, the deseasonalized no-change and combined exponential smoothing forecasts 

reduced MAPE by 27 percent on average compared to forecasts from seven more-complex 

methods; namely five expert forecasters who had access to causal information, Box-Jenkins, 

and an autoregressive model (Exhibit 1 from Makridakis et al., 1993). In the case of the M3 

Competition, the deseasonalized no-change, combined exponential smoothing, and Rule-

Based Forecasting forecasts reduced MAPE by nearly 1 percent on average compared to 

forecasts from 17 more complex methods (Table 6 from Makridakis and Hibon, 2000). The 

relatively modest error reduction from the simpler methods in the M3 Competition 

presumably arises because the contestants learnt that naïve forecasts, exponential 

smoothing, and damping are hard to beat and, as a result, more contestants entered 

forecasts drawn from these methods via expert systems and proprietary software, and fewer 

of the complex forecasting methods that have failed badly were entered.  

     Forecasts from neural networks, a complex method, were 3.4 percent less accurate than 

relatively simple damped-trend forecasts in a test against 3,003 series in the M3-

Competition (Makridakis and Hibon, 2000). In Crone, Hibon, and Nikolopoulos’s (2011) 

subsequent forecasting competition, competitors entered forecasts from 27 methods—22 of 

which were neural network methods—for 1 to 18 month horizons for either 11 or 111 

monthly time series. The competition organizers included forecasts from six methods that 

are simple using this article’s definition. They are the naïve or no-change model without 

seasonal adjustment, seasonal adjustment, single exponential smoothing, Holt’s exponential 

smoothing, dampened exponential smoothing, and a simple average of the exponential 
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smoothing forecasts. The median RAEs of forecasts from the six simple methods are 9.9 

percent smaller than the median RAEs of the forecasts from the 22 neural network methods 

and 8.5 percent smaller than the median RAEs of the forecasts from all 27 of the complex 

methods entered in the competition when compared using geometric means. Moreover, the 

typical neural network forecast was four percent less accurate than forecasts from the naïve 

(no-change) model.   

     For another example, consider the task of forecasting intermittent demand. Syntetos, 

Babai and Gardner (this issue) compare forecasts from simple, no trend, exponential 

smoothing and two other simple techniques developed specifically for intermittent demand 

forecasts, with those from a complex method reported by Willemain, Smart, and Schwarz 

(2004). They find little difference in the forecasts for jewelry sales, and forecasts from the 

complex method were not as useful as those from simple exponential smoothing for 

electronics sales. 

     Nikolopoulos, Goodwin, Patelis, and Assimakopoulos (2007) compare methods for 

forecasting audience shares for a holdout sample of 12 TV sporting events. A simple 

average of the shares obtained by the five most analogous TV shows, from among 34 

previous shows, reduced error by 31 percent compared to the average errors of forecasts 

from two multivariate regression and three neural network models. Their forecasts based on 

three analogies and one analogy are not as accurate as those based on five, which is 

consistent with the findings of Green and Armstrong (2007), and suggests why Brighton 

and Gigerenzer’s (this issue) “single nearest neighbor” analogy forecasts perform relatively 

poorly in their test of methods for picking the city with the larger population of German 

city pairs: they used only a single analogy.  

     In another example of extrapolating from analogous data, Wright and Stern (this issue) 

compare the accuracy of sales forecasts for very different new products. The simpler, more 

intuitive method based on the sales of analogous products provided forecasts that were 

substantially more accurate—error was reduced by 43 percent—than the forecasts from 

three established complex models. Wright and Stern note that the established complex 

models are, in turn, simpler than four other models that were rejected in prior research due 

to the relative inaccuracy of their forecasts.  

3.3. Causal methods 
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     Causality is often complex. As a consequence, people often assume that complex 

methods and models will be needed for forecasting. Lesser (1968) observes that 

econometricians strive for complexity by using more equations, more complex functional 

forms, and more complex interactions in their regression models. Consistent with this, a 

survey of leading econometricians by Armstrong (1978) finds that the great majority of the 

21 respondents agree with the proposition that more complex econometric methods will 

provide more accurate forecasts. A study on the accuracy of short-term economic forecasts 

by the National Bureau of Economic Research in the early 1970s concludes that, “the 

record reveals no clear-cut and sustained advantage of complex… forecasting systems” 

(Juster 1972, p. 23). 

     As early as the mid-1900s, econometricians proposed that simultaneous equations—

which are complicated because they involve interactions among the equations—should lead 

to more accurate forecasts than simpler approaches. Armstrong (1985) found five 

comparative studies; the use of simultaneous equations failed to improve accuracy in any of 

them (p. 200).  

     Nikolopoulos, Goodwin, Patelis, and Assimakopoulos (2007) find that a simple one-

causal-variable regression model, estimated from 34 observations, reduces the error of 

audience share forecasts by 37 percent, compared to forecasts from two more-complex 

regression models using the same data. One of the complex models incorporated all three 

available causal variables and the other was a stepwise regression model incorporating the 

best two variables, based on correlations. The simple model also provided an error 

reduction of 22 percent compared to the average of the forecast errors from three neural 

network models. 

     Fildes, Wei, and Ismail (2011) compared conditional one, two, and three-year forecasts 

of air passenger traffic flows from ten complex econometric models with exponential 

smoothing forecasts. Compared to the average complex econometric forecast, exponential 

smoothing forecasts reduced error across all horizons and overall by 10.8 percent on the 

basis of geometric RAE (from Fildes, Wei, and Ismail, 2011, Table 6). Despite the fact that 

the econometric models use more information, the complexity penalty led to increased 

forecast errors. 
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     The case for simple econometric methods became stronger when evidence on the value 

of equal-weights began to appear in the 1970s (e.g. Schmidt, 1971). Empirical evidence 

shows that simply assigning equal-weights to standardized predictor variables in a linear 

model usually yields ex ante forecasts that are at least as accurate as those from methods, 

such as regression analysis, that calculate optimal fits with the estimation data (see Graefe, 

this issue, for a review of the evidence).  

     Woike, Hoffrage, and Petty (this issue) provide further evidence on the advantages of 

uncomplicated weighting methods in their simulations of venture capital investment 

decisions. Their simpler weighting schemes provided predictions that led to more profitable 

decisions in most environments and provided the most reliable predictions when the 

environment was uncertain.  

     The Dean of North Dakota College of Pharmacy asked Gorr, Nagin, and Szczypula 

(1994) to develop a better model for forecasting prospective students’ final GPAs. The 

college used a model consisting of a simple judgmentally weighted index of seven 

variables. Alternative models based on multiple regression, stepwise regression, and 

artificial neural networks provided no meaningful improvements in accuracy.  

     Graefe (this issue) examines evidence from U.S. presidential election forecasting. The 

ex ante forecast errors from versions of nine established regression models that equally 

weighted the causal variables were five percent smaller than those from the original models. 

In addition, Graefe demonstrates one of the major advantages of a simple additive equal-

weights approach: the ability to include all variables that are important in a causal model. 

The error of ex ante forecasts from an equal-weights model that included all of the 27 

unique causal variables from the nine original models was 48 percent lower than the error 

of the typical model and 29 percent lower than the error of the forecasts from the most 

accurate regression model.  

3.4. Combining forecasts  

     Combining forecasts that incorporate different data and knowledge is a simple and 

easily understood way to represent prior knowledge. In a point of departure with Brighton 

and Gigerenzer (this issue), we regard combining as being an inherently simple forecasting 

procedure in keeping with the definition proposed in this article.  
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     Complex methods for averaging have been proposed, but have not been met with 

success. An examination of Clemen's (1989) review of 209 studies on combining forecasts 

suggests that complex combining schemes cannot be relied upon to provide forecasts that 

are more accurate than those from simple averages. Studies since 1989 support Clemen’s 

conclusion. For example, Duncan, Gorr, and Szczpula (2001, p. 209 Exhibit 6) find that 

using a complex method for combining forecasts of school revenues from a complex 

forecasting method increases forecast errors from 5.5 to 10.7 percent, or by 94 percent.  

     Lyon, Wintle, and Burgman (this issue) elicit confidence intervals for estimates of 311 

quantities from 264 participants in 15 experiments. They test 13 complex approaches to 

combining the subjects’ confidence intervals, and find that simple trimmed-means provide 

the most accurate point forecasts. Graefe, Küchenhoff, Stierle, and Riedl (2014) find that 

for economic forecasting and election forecasting, the simple average provided more 

accurate predictions than did a Bayesian approach to combining in five comparisons, and 

somewhat less accurate forecasts in one comparison.   

     Fildes and Petropoulos (this issue) provide evidence on forecasting method selection for 

combinations. Their findings support differential weighting in situations when there is prior 

evidence on which methods provide forecasts that are most accurate given the conditions.  

 

4. Why simplicity repels and complexity lures 

     For what reasons do forecasters avoid simplicity? One is that if the method is intuitive, 

reasonable, and simple, would-be clients might prefer to do their own forecasting.   

     Another reason is that complexity is often persuasive. The “Dr. Fox study” found that 

university faculty and staff gave high ratings to a complex lecture, even though the content 

was nonsensical. Respondents commented that while they did not understand everything Dr. 

Fox said, he certainly “knew his stuff” (Naftulin, Ware, and Donnelly 1973). An extension 

by Armstrong (1980) describes tests using simple and complex versions of papers with 

identical content. Academicians rated the authors of research papers more highly when the 

papers were written in more complex ways. For additional experimental evidence, see 

Armstrong (2010, pp. 183–184).  

     Eriksson’s (2012) experiment provides additional evidence on the persuasiveness of 

complexity. The experiment included showing abstracts of two published papers to 200 
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subjects, all of whom were familiar with reading research reports and had post-graduate 

degrees. One of the abstracts includes a sentence from an unrelated paper that contains an 

algebraic equation. Overall, subjects judged the complex abstract—the one with the 

nonsense mathematics—to be of higher quality.  

     Researchers are aware that they can advance their careers by writing in a complex way. 

MIT students developed SCIgen, computer software to randomly select common but 

complex words and apply grammar rules to produce documents that pass as research 

papers on computer science. The title of one paper generated by the software was: 

“Simulating Flip-flop Gates Using Peer-to-peer Methodologies.” At least 120 such 

computer-generated papers were published in peer-reviewed scientific journals (Labbé 

and Labbé, 2013; Lott, 2014). 

     Juster (1972, p. 23) states, “Few people would accept the naïve no-change model even if 

it were clearly shown to be more accurate.” This supposition was supported by Hogarth’s 

(2012) description of four key developments in forecasting in which senior academics 

resisted overwhelming evidence that simple methods provide forecasts that are more 

accurate than those from complex ones.  

     Clients might prefer forecasts that support their plans—another reason for the popularity 

of complexity in forecasting. Developing complex methods that can be used to provide 

forecasts that support a desired outcome is relatively easy.  

 

5. Discussion 

     During our more than two years working on this special issue, we made repeated 

requests for experimental evidence that complexity improves forecast accuracy under some 

conditions. With the enormous efforts and expenditures on analytics and other complex big 

data methods, one would expect some papers to provide evidence in favor of complexity in 

forecasting. We have not been able to find such papers, despite our efforts to do so. 

5.1. Summary of evidence from this review 

     To obtain a rough idea of the effects of complexity on ex ante forecast accuracy we 

examined the studies described in this article to find estimates for the direction and size of 

the effects. The assessments are crude because the definitions of simplicity vary across the 

different studies. We do not, therefore, claim that our estimate of the effect of complexity 
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on forecast accuracy is definitive, nor do we claim that our review was comprehensive. 

We hope that other researchers will expand on our work, and perhaps find forecasting 

problems for which complexity produces forecasts that are substantially more accurate 

than forecasts from sophisticatedly simple methods. Our judgments are provided at 

simple-forecasting.com, so others can examine the effects of their own judgments as they 

see fit. 

     In total we identify 32 papers—journal articles and book chapters—incorporating 97 

formal comparisons of the accuracy of forecasts from complex methods with those from 

simple—but not in all cases sophisticatedly simple—methods. Eighty-one percent of the 

comparisons found that forecasts from simple methods were more accurate than, or 

similarly accurate to, those from complex methods. Averaged across the 25 papers that 

provide quantitative comparisons, the errors of forecasts from complex methods were 27 

percent greater than the errors of forecasts from simple methods. The Table summarizes 

comparisons. 

Table 
Summary of evidence on accuracy of forecasts from complex vs. simple methods 
 --------- Number of Comparisons ---------  

Method type 
Total 

papers 

Total 
compar-

isons 

Simple 
better or 
similar 

Effect 
size 

Error 
increase vs 
simple (%) 

   Judgmental 4 4 4 4 28.2 
   Extrapolative 17 62 51 12 27.5 
   Causal 8 23 19 5 25.3 
   Combined 3 8 7 4 23.9 
All method types 32 97 81 25  
Weighted average*      26.7 
*Weighted by total papers 

 

5.2. Predicting unusual events 

     Simple evidence-based methods seem well equipped to deal with the problem of 

predicting unusual events.	
  For	
  example,	
  Nikolopoulos,	
  Litsa,	
  Petropoulos,	
  Bougioukos,	
  

and	
  Khanmash	
  (this	
  issue)	
  extend	
  the	
  research	
  on	
  forecasting	
  special	
  events	
  by	
  

testing	
  variations	
  of	
  established	
  sophisticatedly	
  simple	
  methods	
  to	
  forecast	
  the	
  take-­‐
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up	
  of	
  two	
  new	
  government	
  programs.	
  They	
  found	
  that	
  asking	
  diverse	
  experts	
  to	
  

propose	
  and	
  discuss	
  analogies	
  can	
  lead	
  to	
  an	
  error	
  reduction	
  of	
  as	
  much	
  as	
  54	
  percent	
  

compared	
  to	
  using	
  unaided	
  judgment.	
  	
  

	
  	
  	
  	
  	
  The	
  index	
  method	
  is another simple approach that is well suited to forecasting unusual 

events. By	
  allowing	
  forecasters	
  to	
  include	
  all variables that are known to be important in 

a model, an index model is more likely to accurately predict an extreme event than is a 

statistical model estimated from historical data on a subset of variables that does not 

include all possible combinations of variable values.  

5.3. Other evidence on simplicity versus complexity in forecasting 

     An alternative approach to assess the effects of simplicity in forecasting is to assess the 

simplicity of evidence-based methods that have been shown to produce accurate forecasts. 

The Forecasting Methods Selection Tree—available online at forecastingprinciples.com—

presents such forecasting methods in the form of a decision tree. The Tree is the product of 

40 leading experts in various areas of forecasting from different disciplines, and 123 

reviewers (Armstrong 2001), along with evidence cited on the forecastingprinciples.com 

site since 2001.  

     None of the 22 methods in the Selection Tree is complex by the definition proposed in 

this paper. In other words, the evidence-based methods that are recommended for use 

because they have been shown to offer superior forecasting accuracy are all simple.  

5.4. Evidence to date favors simplicity in forecasting  

     The evidence on comparative predictive validity along with the evidence related to the 

effective methods listed in the Forecasting Methods Selection Tree constitute strong 

arguments for starting simple when forecasting, and adding complexity only if needed. To 

the best of the authors of this article’s knowledge, the need for complexity has not arisen. 

Perhaps future research will identify benefits from complexity under some conditions. To 

establish such a claim would, however, require that researchers test their complex methods 

against sophisticatedly simple evidence-based methods, and publish their findings 

regardless of the results. 

     Work on this JBR Special Issue on simplicity in forecasting began with the expectation 

that simple forecasting would help to improve understanding, reduce mistakes, reveal bias, 

and identify fraud. The authors expected that forecasts from simple methods would also 
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generally tend to be somewhat more accurate, but were concerned that the research 

literature would not present a true picture of simplicity in forecasting. In particular, 

researcher bias toward confirmation of their hypotheses—whether intended or not—would 

likely produce an overabundance of studies finding in favor of complex methods. 

Moreover, referee bias against simple methods likely has a damping effect on the number 

of papers that find in favor of simple methods. The results, then, astonish the authors. The 

results are consistent across the papers in finding in favor of simple methods, to the extent 

that complex methods bring with them a forecast error penalty of about one-quarter.  

     The gains from simplicity identified here are consistent with the gains from following 

the simple guidelines of the Golden Rule of Forecasting (Armstrong, Green, and Graefe, 

this issue). In that article, violating a typical guideline increased error by about one-third, 

and each additional violation would cause further losses in accuracy. The substantial gains 

in accuracy that are possible from sophisticatedly simple forecasting are a tribute to a half-

century of research by the evidence-based forecasting community. 

 

6. Summary and conclusions 

     The search for evidence for this introduction to the Special Issue ends with the 

conclusion that forecasting procedures should always be simple enough for forecast users 

to understand. Complexity beyond the sophisticatedly simple fails to improve accuracy in 

all but 16 of the 97 comparisons in 32 papers that provide evidence. Complexity increases 

forecast error by an average of 27 percent across the 25 papers with quantitative 

comparisons. In addition to accuracy, simple methods can increase understanding, reduce 

the likelihood of errors, and aid decision-makers.  

     Remarkably, no matter what type of forecasting method is used, complexity harms 

accuracy. Complexity increases errors for forecasts from judgmental, extrapolative, and 

causal methods by an average of more than 25 percent. Complexity when combining 

forecasts increases errors by nearly 25 percent. Moreover, all of the 22 useful evidence-

based methods found by the forecasting principles project are simple.  

     Given the weight of evidence and the manifest advantages of simplicity, the advocates 

of complexity in forecasting surely must be the ones to shoulder the burden of proving that 
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their methods and models will provide forecasts that are accurate relative to those from 

sophisticatedly simple ones. They have so far failed to do so. 

     This introduction to the Special Issue describes how forecast users can evaluate the 

simplicity of forecasting methods. A simplicity checklist—which should take only minutes 

to complete—is available at simple-forecasting.com to guide those evaluations. Obtaining 

independent ratings of simplicity from several objective raters is desirable, but even a 

single rating would alert the user to harmful complexity.  

     If you nevertheless use forecasts from complex methods to help you make decisions, 

expect to be confused about how the forecasts were made and an accuracy penalty of more 

than one-quarter. Forecast accuracy in many fields has failed to improve not because of a 

lack of knowledge about how to forecast better, but due to a preference for complexity. 
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